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Abstract Time-delays in state or control can never be eliminated in many discrete
systems, like computer controlled systems. Introducing an extended state vector,
the original equations with time-delays can be transformed into standard equations
without time-delays. Then the theory and methods of usual discrete system can be
applied. Based on analogies between structural mechanics and optimal control theory,
the optimal norm corresponding to the fundamental frequency of structural vibration,
which is a Rayleigh-quotient problem, can be solved by extended Wittrick–Williams
algorithm. Numerical results disclose that the optimal norm does not increase monot-
onously with time-delays and can be decreased effectively by selecting appropriate
time delays.

Keywords Discrete systems with time-delays · Optimal H∞ induced norm ·
Extended W–W algorithm

Introduction

Time delay exists commonly in dynamic systems due to measurement, transmission
and transport lags, computational delays or unmodelled inertias of system compo-
nents. Time delay has been generally regarded as a main source of instability and
poor performance. Therefore, the research on the problem of H∞ control with time-
delays is very important for both theory and practice. Optimal discrete H∞ control
with time-delays is investigated in this paper. Introducing extended state vectors
[1], the original equations with time-delays are transformed into standard equations
without time-delays. Since the controller is obtained directly from the time-delay
equations, system stability can be guaranteed easily. Based on the analogy between
structural mechanics and optimal control theory, this paper adopts the extended
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Wittrick–Williams (W–W) algorithm [2,3] to compute optimal induced norm of dis-
crete H∞ control systems with time-delays. Numerical results demonstrate the influ-
ence of time-delays on the optimal norm.

1 Problem formulation

Considering the following uncertain discrete system with state time-delays:

xk+1 = A0xk + A1xk−1 + · · · + Amxk−m + B0uk + D0wk, xk = 0,

when k = −m, . . . , 0, (1.1)

zk = H0xk + N0uk, (1.2)

where k ∈ [0, N − 1], xk ∈ Rn, wk ∈ Rl, uk ∈ Rm and zk ∈ Rp are the state vector,
disturbance input, control vector and output control, respectively, and m ≥ 0 is a
known constant delay. A0, A1, . . . , Am, B0, D0, H0 and N0 are system matrices with
appropriate dimensions. It is also assumed that NT

0 [H0 N0] = [0 I], Q0 = HT
0 H0.

Referring to the typical H∞ control problem, the object of H∞ control with time-
delays is to find an optimal control strategy u∗

k = �(xk, . . . , xk−m) in the square
summable space L2[0, N − 1] such that

1
2

N−1∑

k=0

zT
k zk + 1

2
xT

NSNxN <
1
2
γ 2

N−1∑

k=0

wT
k wk, γopt = max

w
min

u
γ 2, (1.3)

where w ∈ L2[0, N − 1], SN is a symmetric semi-positive-definite matrix, γopt is the
optimal induced norm of discrete H∞ control system with time-delays, which ensures
the existence of the controller of the system. So the solution of γopt is very important
for both design and analysis.

2 Standardization of system equation

Introducing the extended vector x̄k ={xT
k , xT

k−1, . . . , xT
k−m}T and the extended

matrices

A =

⎡

⎢⎢⎢⎣

A0 A1 · · · Am
I 0 · · · 0
...

. . .
. . .

...
0 · · · I 0

⎤

⎥⎥⎥⎦, B =

⎡

⎢⎢⎢⎣

B0
0
...
0

⎤

⎥⎥⎥⎦, D =

⎡

⎢⎢⎢⎣

D0
0
...
0

⎤

⎥⎥⎥⎦,

H = [
H0 0 · · · 0

]
, N = N0. (2.1)

Then the system equations (1.1) and (1.2) are standardized as follows

x̄k+1 = Ax̄k + Buk + Dwk, x̄0 = {0T, 0T, · · · , 0T}T (2.2)

zk = Hx̄k + Nuk. (2.3)

Obviously, the features of N
T[H N] = [0 I] and Q = H

T
H are still maintained, where

Q = diag([Q0, 0, . . . , 0]).
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The above description about optimal H∞ control with time-delays is also
standardized to find an optimal control strategy u∗

k = �(x̄k) such that

1
2

N−1∑

k=0

zT
k zk + 1

2
x̄T

NSN x̄N <
1
2
γ 2

N−1∑

k=0

wT
k wk, γopt = max

w
min

u
γ 2 (2.4)

where SN = diag([SN , 0, . . . , 0]).
So far, the problem with time-delays has been transformed into standard discrete

H∞ control problem. Therefore, the former methods and conclusions can be used
here. Problems with control-delay can be solved in the same way by introducing the
extended vector x̄k = {xT

k , uT
k−m, uT

k−m+1, . . . , uT
k−1}T.

3 Controllability of system

Reference [4] presented the concepts of relative and absolute controllability of
discrete systems with delays in control, which defines the relative controllability that
for any initial state x−m, x−m+1, . . . , x0 there exists a sequence of controls u0, u1, . . . ,
uN−1 to satisfy the final state xN = 0; while defines the absolute controllability that
for any initial extended state x̄0, which is the extended vector introduced above,
there exists a sequence of controls u0, u1, . . . , uN−1 to satisfy the final extended state
x̄T

N = {xT
N , xT

N−1, . . . , xT
N−m}T = 0. Obviously the system with time-delays is relatively

controllable if it is absolutely controllable. And the conditions of controllability of
the extended system are equivalent to the conditions of the absolutely controllability
of the original system with time-delays.

4 Computation of optimal induced norm

The problem (2.4) can be expressed as variational form

Jc(u, w) = 1
2

N−1∑

k=0

(
zT

k zk − γ 2wT
k wk

)
+ 1

2
x̄T

NSN x̄N , max
w

min
u

Jc, (4.1)

which is a min–max problem under constrains. Introducing the Lagrangian multiplier
vector λk+1 for the system equation (2.2) and directly substituting equation (2.3) into
Eq. 4.1, gives the unconstrained variational equation

JcA(u, w, x̄, λ) =
N−1∑

k=0

[
1
2

(
x̄T

k Qx̄k + uT
k uk − γ 2wT

k wk

)

+λT
k+1

(
Ax̄k + Buk + Dwk − x̄k+1

)]
+ 1

2
x̄T

NSN x̄N . (4.2)

For an arbitrary suboptimal γ 2 > γ 2
opt, the implementation of the variation for vectors

u and w gives

uk = −B
T
λk+1, (4.3a)

wk = γ −2D
T
λk+1 (4.3b)
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substituting (4.3) back into (4.2), give the variational equation for the dual vectors x̄
and λ

JcA(x̄, λ) =
N−1∑

k=0

[
−

(
λT

k+1x̄k+1 − λT
k+1Ax̄k − 1

2
x̄T

k Qx̄k

+1
2
λT

k+1B B
T
λk+1

)
+ 1

2
γ −2λT

k+1D D
T
λk+1

]
+ 1

2
x̄T

NSN x̄N . (4.4)

Implement the variational operation and get the dual Hamiltonian difference equa-
tions

x̄k+1 = Ax̄k −
(
B B

T − γ −2D D
T
)

λk+1, (4.5a)

λk = Qx̄k + A
T
λk+1. (4.5b)

The corresponding boundary conditions are

x̄0 = 0, (4.6a)

λN = SN x̄N . (4.6b)

Equation.(4.5) can be solved by the routine method of Riccati transformation, that is
λk = Skx̄k

Sk = Q + A
T

(
B B

T − γ −2D D
T + S

−1
k+1

)−1
A, where SN is konwn (4.7)

substituting into (4.3), get the feedback controls as

uk = −B
T

Sk+1x̄k+1 = −B
T

Sk+1

(
I +

(
B B

T − γ −2D D
T
)

Sk+1

)−1
Ax̄k, (4.8a)

wk = γ −2D
T

Sk+1x̄k+1

= −γ −2D
T

Sk+1

(
I +

(
B B

T − γ −2D D
T
)

Sk+1

)−1
Ax̄k, (4.8b)

where the induced norm γ −2 is involved in Eqs. 4.7 and 4.8, which reflects the
demands for robust performance. But Eq. 4.8 has a positive solution only when
γ 2 > γ 2

opt, i.e. γ −2 < γ −2
opt is satisfied. Therefore, the solution of γ −2

opt is very important.

4.1 Extended Rayleigh-quotient

Variational Equation 4.4 can be expressed as the form

δ
(
�1 − γ −2�2

)
= 0, (4.9)

where

�1 =
N−1∑

k=0

(
λT

k+1x̄k+1 − λT
k+1Ax̄k − 1

2
x̄T

k Qx̄k + 1
2
λT

k+1BB
T
λk+1

)

−1
2

x̄T
NSN x̄N , (4.10a)
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�2 = 1
2

N−1∑

k=0

λT
k+1D D

T
λk+1, (4.10b)

where x̄ and λ are considered to be two independent variable vectors. Clearly, �2 is
non-negative while �1 should be positive for real solutions. Note that �2 is unrelated
to x̄, so the variational equation

δx�1 = 0 (4.11)

can be satisfied first, which leads to Eq. 4.5b. Using boundary conditions, one can get

�1 =
N−1∑

k=0

(
x̄T

k

(
λk−A

T
λk+1−Qx̄k

)
+ 1

2
x̄T

k Qx̄k+ 1
2
λT

k+1B B
T
λk+1

)
+λT

N x̄N
1
2

x̄T
NSf x̄N ,

= 1
2

N−1∑

k=0

(
x̄T

k Qx̄k + λT
k+1B B

T
λk+1

)
+ 1

2
x̄T

NSf x̄N > 0 (4.12)

then variational Eq. 4.9 can now be written as

γ −2 = �1/�2, γopt = max
x̄

min
λ

(�1/�2), (4.13)

which is considered as extended Rayleigh-quotient, because there are two indepen-
dent variables x̄ and λ. Based on the analogy between structural mechanics and
optimal control theory, γ −2

opt corresponds to the fundamental frequency of structural
vibration.

If matrix Q = H
T

H is positive, variational Eq. 4.13 can be reduced to be the typi-
cal Rayleigh-quotient with only one independent variable vector λ, by substituting x̄
using Eq. 4.5b. In the optimal control context, Q is not necessarily positive (especially
for extended system). But the controllability and observability of system matrices
(A, B, H) can ensure the existence of extended Rayleigh-quotient in Eq. 4.13.

For Rayleigh-quotient problems, the extended W–W algorithm enables the eigen-
values to be found to any specified precision [3]. The method is based on the interval
mixed energy, which comes from structural mechanics.

4.2 Interval mixed energy

The variational Eq. 4.4 can be expressed as follows

JcA(x̄, λ) =
N−1∑

k=0

[
−λT

k+1x̄k+1 + V(x̄k, λk+1)
]

+ 1
2

x̄T
NSf x̄N , (4.14)

where

V(x̄k, λk+1) = 1
2

x̄T
k Ex̄k + λT

k+1Ax̄k − 1
2
λT

k+1

(
B B

T − γ −2D D
T
)

λk+1, (4.15)

which defines the interval (k, k+1) mixed energy and has the form for linear problems

V(x̄a, λb) = 1
2

x̄T
a Ex̄a + λT

b Fx̄a − 1
2
λT

b Gλb, (4.16)

where E = Q, F = A, G = B B
T − γ −2D D

T
and ET = E, GT = G.
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The importance of interval mixed energy is that two consecutive intervals (ta, tb)

and (tb, tc)can be combined one longer interval (ta, tc), whose interval mix energy is
V(ta, tc)

V(x̄a, λc) = 1
2

x̄T
a Ecx̄a + λT

c Fcx̄a − 1
2
λT

c Gcλc, (4.17)

where

Ec = E1 + FT
1 (I + E2G1)

−1E2F1, (4.18a)

Gc = G2 + F2G1(I + E2G1)
−1FT

2 , (4.18b)

Fc = F2(I + G1E2)
−1F1. (4.18c)

These interval combination equations can be applied recursively (Fig.1). However,
in the present context the eigensolutions are mainly concerned. So the eigenvalue
count of the interval combination is necessary. The original W–W algorithm is pro-
posed for the case that conditions at both ends are expressed as displacements [5].
While the interval mixed energy is described with x̄a and λb at two ends, so the
extended W–W algorithm [3] should be used here. For any given ω# = γ −2

# , let JR(ω#)

denotes the number of eigenvalue in the interval (ta, tb) that smaller than ω# under
the end conditions x̄a = 0, λb = 0. From the method described in [3], the eigenvalue
count for interval combination is given

JRc(ω#) = JR1(ω#) + JR2(ω#) − s{E2} + s{G1 + E−1
2 }, (4.19)

where s{M}denotes the number of negative elements in matrix D, where matrix M is
factorized as M = LDLT

Therefore, the interval mixed energy used in the eigenvalue problem should be
expressed as (E, G, F, JR(ω#)), all of which are functions of (ta, tb)and ω# = γ −2

# . And
initial conditions are E → O, G → O, F → I, when ta → tb

Let (E1, G1, F1, JR1(ω#))denotes the interval
(
tk, tk+1

)
, and (E2, G2, F2, JR2(ω#)) de-

notes the interval
(
tk+1, tN

)
and (Ec, Gc, Fc, JRc(ω#))denotes the interval (tk, tN), then

the combination equation (4.18a) is the same as the discrete Riccati iterative equation
(4.7) except for the initial conditions. Actually implement the following equation after
interval combination (tk, tN)

Sk = Ec + FT
c (S

−1
N + Gc)

−1Fc, (4.20)

JRNc(ω#) = Jc(ω#) − s{Sf } + s{S−1
f + Gc}, (4.21)

where Sk is the solution of Eq. 4.7 at tk. If JRNc(ω#) = 0, the specified γ −2
# = ω# is a

suboptimal parameter, otherwise γ −2
# is too large hence no positive solution of Ricc-

ati equation (4.7) exists. Based on the criterion, some searching procedures, such as
bisection method, can be introduced to find the lowest eigenvalue γ −2

opt to any required
precision.
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4.3 Procedure of optimal induced norm

The optimal induced norm is the result of a bisection method of suboptimal solutions.
The algorithm is given below in meta-language.

Firstly compute the extended matrices A, B, D, H, N from the original delay-sys-
tem matrices A0, B0, D0, H0, N0, then enter into the following recursive procedure to
search γ −2

opt :

0. { Select a suitable γ −2
# ; compute F = A, G = BB

T − γ −2DD
T

, E = H
T

H }.
1. { E1 = E2 = E; G1 = G2 = G; F1 = F2 = F; JR1 = JR2 = 0 }.
2. For (k=1;k ≤ N − 1;k++) { comment: use k ∈ [0, N − 1] for finite horizon case;

while use ‖Fc‖ → 0 for infinite horizon case;
{Compute Ec, Gc, Fc and JRc from Eqs. 4.18a–c and 4.19 }
{E2 = Ec; G2 = Gc; F2 = Fc; JR2 = JRc}
}
{Compute JRNc from Eq. 4.21 } comment: γ −2

opt for infinite horizon case is indepen-
dent to boundary conditions, the segment can be omitted.

3. If (JRNc >0)
{γ −2

# is an upper bound (ub), and should be lower in the next iteration }
else
{γ −2

# is a lower bound (lb), and should be upper in the next iteration }
if (ub-lb) > ε ( ε is the specified precision )
{reatart from step 0 with the modified γ −2

# }
else
{ break }

The iteration for γ −2
# should be continued until the specified precision is reached.

The lower bound (lb) is taken as γ −2
opt .

5 Examples

Example 1:
This example is taken from Ref. [6], which is a continuous system with state delays.

The sampling period is T = 0.125, using zero-order holder, get the corresponding
discrete data as follows

A0 =
[

0.687289 0.1114648
0 1.1331485

]
, Am = λ ·

[
0.1049597 0.1042369

0.01331485 0

]
,

B0 =
[

0.118693
0.2662969

]
, D0 =

[
0.1042369

0

]
, HT

0 =
[

1
1

]
,

where λ denotes the weight of the matrix of delayed state, m denotes the number of
delay period.

Figures 2 and 3 give the curves of optimal induced norm versus to λ and m (state-
delay), respectively

Example 2:
This example is taken from Ref. [6], which is a continuous system with control

delays. The sampling period is T = 0.125, using zero-order holder, get the corre-
sponding discrete data as follows
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Fig. 1 The interval
combination of mixed energy

2 2 2 2 #_2:   , ( )RInterval J ωE G F1 1 1 1 #_1:   , ( )RInterval J ωE G F

combined interval c : #, ( )c c c RcJ ωE G F

at bt ct

Fig. 2 With state delay (m = 2)

Fig. 3 With state delay (λ = 1.0)

A0 =
[

0.778801 0.118116
0 1.1331485

]
, B0 =

[
0.00751628
0.1331485

]
,

Bm = λ ·
[

0.02211992
0

]
, D0 =

[
0.1105996

0

]
, HT

0 =
[

1
1

]
,

where λ denotes the weight of the matrix of delayed control, m denotes the number
of delay period.
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Fig. 4 With control delay (m = 2)

Fig. 5 With control delay (λ = 1.0)

Figures 4 and 5 give the curves of optimal induced norm versus to λ and m (con-
trol-delay), respectively.

Numerical results demonstrate that the optimal norm does not increase monot-
onously with time-delays and can be decreased effectively by selecting appropriate
time-delays.

6 Concluding remarks

The optimal H∞ induced norm computation for discrete system with time-delays is
investigated in this paper. Introducing the extended vector, the original equations with
time-delays are transformed into standard equations. Then the former conclusions can
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be used. Based on analogies between structural mechanics and optimal control theory,
the optimal norm corresponds to the fundamental frequency of structural vibration,
which is a Rayleigh-quotient problem and can be solved by extended W–W algorithm.
The controller is deduced from the original equations with time-delays, without any
approximation, so system stability can be guaranteed and the optimal norm is depen-
dent on time delays. Numerical results demonstrate that the optimal norm does not
increase monotonously with time-delays and can be decreased effectively by selecting
appropriate time-delays. And the method can be extended to the H∞filtering problem
with time-delays conveniently.
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